vllm.entrypoints.pooling.embed.protocol ¶
EmbeddingRequest module-attribute ¶
EmbeddingRequest: TypeAlias = (
EmbeddingCompletionRequest | EmbeddingChatRequest
)
EmbeddingBytesResponse ¶
Bases: OpenAIBaseModel
Source code in vllm/entrypoints/pooling/embed/protocol.py
EmbeddingChatRequest ¶
Bases: PoolingBasicRequestMixin, ChatRequestMixin
Source code in vllm/entrypoints/pooling/embed/protocol.py
embed_dtype class-attribute instance-attribute ¶
embed_dtype: EmbedDType = Field(
default="float32",
description="What dtype to use for encoding. Default to using float32 for base64 encoding to match the OpenAI python client behavior. This parameter will affect base64 and binary_response.",
)
endianness class-attribute instance-attribute ¶
endianness: Endianness = Field(
default="native",
description="What endianness to use for encoding. Default to using native for base64 encoding to match the OpenAI python client behavior.This parameter will affect base64 and binary_response.",
)
mm_processor_kwargs class-attribute instance-attribute ¶
mm_processor_kwargs: dict[str, Any] | None = Field(
default=None,
description="Additional kwargs to pass to the HF processor.",
)
EmbeddingCompletionRequest ¶
Bases: PoolingBasicRequestMixin, CompletionRequestMixin
Source code in vllm/entrypoints/pooling/embed/protocol.py
embed_dtype class-attribute instance-attribute ¶
embed_dtype: EmbedDType = Field(
default="float32",
description="What dtype to use for encoding. Default to using float32 for base64 encoding to match the OpenAI python client behavior. This parameter will affect base64 and binary_response.",
)
endianness class-attribute instance-attribute ¶
endianness: Endianness = Field(
default="native",
description="What endianness to use for encoding. Default to using native for base64 encoding to match the OpenAI python client behavior.This parameter will affect base64 and binary_response.",
)
EmbeddingResponse ¶
Bases: OpenAIBaseModel
Source code in vllm/entrypoints/pooling/embed/protocol.py
created class-attribute instance-attribute ¶
id class-attribute instance-attribute ¶
id: str = Field(
default_factory=lambda: f"embd-{random_uuid()}"
)
EmbeddingResponseData ¶
Bases: OpenAIBaseModel